APPROACH

To achieve this, we leveraged Sancus in the following aspects:

  • Data Engineering: Processed, cleansed and passed a high volume of data for approximately 3 million SKUs through the text mining pipeline
  • Neural Networks: Developed an ML algorithm using elements of supervised and unsupervised learning to classify the remaining SKUs based on existing classifications
  • Deployment: This ML based product classification solution was implemented on the cloud using Microsoft Azure

KEY BENEFITS

  • The solution allowed the client to achieve product to category classification at scale with higher accuracies, providing better insights into revenue and sales opportunity

RESULTS

  • The monthly classification throughput increased by 28x and the total accuracy of product classification shot up to 95%.

[wpli_login_link class='et_pb_button et_pb_button_0 et_pb_module et_pb_bg_layout_dark' text='Download this Case Study' redirect = 'https://www.tredence.com/case-study/used-sancus-to-help-a-leading-industrial-company-get-better-visibility-into-revenue-and-sales-opportunity-by-product-category?download=true']