APPROACH

To address this, the team at Tredence developed an analytically robust approach with the following specifications:

  • Identified primary drivers among the selected machine variables using ML variable reduction techniques
  • Driver models to understand key influential variables and determine the energy consumption profile
  • Identified the right combination of drivers under the given production constraints – time, quantity and quality
  • Optimization engine to provide the machine settings for a given production plan

KEY BENEFITS

  • The learnings will be used across similar machines to create operational guidelines for reducing energy consumption

RESULTS

  • We were able to achieve a ~5% reduction in energy consumption across major machines

[wpli_login_link class='et_pb_button et_pb_button_0 et_pb_module et_pb_bg_layout_dark' text='Download this Case Study' redirect = 'https://www.tredence.com/case-study/optimized-the-energy-consumption-profile-by-finding-the-optimal-settings-of-the-mill-plant?download=true']